SINEAX TV 8191 channel Isolating amplifier unipolar/bipolar

For electrically insulating, amplifying and converting DC signals

Application

The purpose of the active isolating amplifier SINEAX TV 819 (Fig. 1 and 2) is to electrically insulate input and output signals, respectively to amplify and/or change the signal level or type (current or voltage) of the input signals.

The compact SINEAX TV 819 provides a large selection of input and output ranges that can be configured by the user with soldered jumpers and potentiometers.

The amplifier fulfils all the important requirements and regulations concerning electromagnetic compatibility EMC and Safety (IEC 1010 resp. EN 61 010). It was developed and is manufactured and tested in strict accordance with the quality assurance standard ISO 9001.

Features / Benefits

- Electric insulation between input, output 2.3 kV and power supply 2.3 kV / Prevents measurement errors due to potential leakage
- Flexibility provided by more than 250 different input and output combinations selected by simply positioning soldered jumpers / Reduced stocking
- Wide DC, AC power pack tolerance / Universal
- Mounting of the isolating amplifier on a top-hat rail
- Housing only 17.5 mm / Low space requirement

Standard versions

Input and output set to $4 \ldots 20 \mathrm{~mA}$. Any of the standard ranges given in the Section "Technical data, measuring inputs" are simply selected by positioning soldered jumpers. The fine adjustment is accomplished using the potentiometers "Zero" ans "Span". It is only necessary to quote the Order No.:

Tabelle 1: Standard-Ausführung

Standard range		Power supply	Screw	Order Code	Order No.
Input	Output		terminals		
4... 20 mA	4... 20 mA	24... 60 V DC/AC	not pluggable	819-311	146838
		$85 . . .230 \mathrm{~V}$ DC/AC		819-321	146846
		$24 . . .60 \mathrm{~V}$ DC/AC	pluggable	819-911	146854
		$85 . . .230 \mathrm{~V}$ DC/AC		819-921	146862

Please complete the Order Code 819 - according to "Table 3: Ordering information" for versions with user-specific input and/or output ranges.

SINEAX TV 8191 channel

Isolating amplifier unipolar/bipolar

Technical data

Measuring input Θ
DC current:
DC voltage:
Overload capacity:
Measuring output

DC current:

Burden voltage:
External resistance:

DC voltage:

Burden:

Current limiter at $\mathrm{R}_{\text {ext }}$ max.:
Voltage limiter at
$R_{\text {ext }}=\infty$:

Limit values $0 . . .0 .1$ to $0 . . .40 \mathrm{~mA}$ also live-zero, start value >0 to $\leq 50 \%$ final value or span 0.1 to 40 mA between - 40 and 40 mA (also bipolar asymmetrical)

Limit values
$0 . . .0 .06$ to $0 . . .600 \vee\left(1000 V^{*}\right)$ also live zero,
start value >0 to $\leq 50 \%$ final value or
span 0.06 to $600 \mathrm{~V}\left(1000 \mathrm{~V}^{*}\right)$ between - 600 and 600 V
(-1000 and $1000 \mathrm{~V}^{*}$)
(also bipolar asymmetrical)
DC current continuously 2-fold
DC voltage
continuously 2-fold

Standard ranges
$0 . .20 \mathrm{~mA}, 4 . . .20 \mathrm{~mA}, \pm 20 \mathrm{~mA}$
Limit values
$0 . . .1$ to $0 . . .20 \mathrm{~mA}$
0.2 ... 1 to $4 . . .20 \mathrm{~mA}$
$-1 \ldots 0 \ldots+1$ to $-20 \ldots 0 \ldots+20 \mathrm{~mA}$
12 V
$R_{\text {ext }} \operatorname{max.}[k \Omega]=\frac{12 \mathrm{~V}}{\mathrm{I}_{\mathrm{AN}}[\mathrm{mA}]}$
$I_{A N}=$ Output circuit full-scale value
Standard ranges
$0 . . .10 \mathrm{~V}, 2 \ldots 10 \mathrm{~V}, \pm 10 \mathrm{~V}$
Limit values
$0 . . .1$ to $0 . . .10 \mathrm{~V}$
$0.2 \ldots 1$ to $2 \ldots 10 \mathrm{~V}$
$-1 \ldots 0 . . .+1$ to $-10 \ldots 0 \ldots+10 \mathrm{~V}$
$R_{\text {ext }} \min .[k \Omega] \geq \frac{U_{A N}[V]}{5 \mathrm{~mA}}$
$U_{A N}=$ Output circuit full-scale value

Approx. $1.1 \times \mathrm{I}_{\mathrm{AN}}$ for current output

Approx. 13 V

[^0]Residual ripple in output current:
$<0.5 \%$ p.p.
Response time:
< 100 ms
Power supply $\rightarrow \bigcirc$
DC, AC power pack (DC or $45 \ldots 400 \mathrm{~Hz}$)
Table 2: Nominal voltages and tolerances

Nominal voltage U_{N}	Tolerance
$24 \ldots 60 \mathrm{~V}$ DC / AC	DC $-15 \ldots+33 \%$
$85 \ldots 230 \mathrm{~V}$ DC / AC	AC $\pm 15 \%$

Power input:
$\leq 1.5 \mathrm{~W}$ resp. $\leq 3 \mathrm{VA}$
Accuracy data (acc. to EN/IEC 60 770-1)
Basic accuracy:

Reference conditions:
Ambient temperature
Power supply
Output burden

Influencing factors:
Temperature
Burden influence

Longtime drift
Switch-on drift
Common and transverse mode influence

Output + or -
connected to ground
Installation data
Mechanical design:

Material of housing:

Mounting:

Position of use:
Electrical terminals (fixed or pluggable):

Limit error $\leq \pm 0.2 \%$ including linearity and reproducibility errors
$23^{\circ} \mathrm{C}, \pm 2 \mathrm{~K}$
$24 \mathrm{VDC} \pm 10 \%$ and $230 \vee \mathrm{VC} \pm 10 \%$
Current: $0.5 \cdot R_{\text {ext }}$ max.
Voltage: $2 \cdot R_{\text {ext }}$ min.
$< \pm 0.1 \%$ per 10 K
$< \pm 0.1 \%$ for current output
$< \pm 0.2 \%$ for voltage output
if $R_{\text {ext }}<2 \cdot R_{\text {ext }}$ min.
$< \pm 0.3 \% / 12$ months
$< \pm 0.2 \%$
$< \pm 0.2 \%$
$< \pm 0.2 \%$

Housing P12/17 and P12/17 St

See section "Dimensional drawings" for dimensions
Lexan 940 (polycarbonate)
flammability class V-0 acc. to UL 94, self-extinguishing, non-dripping, free of halogen
For snapping onto top-hat rail ($35 \times 15 \mathrm{~mm}$ or $35 \times 7.5 \mathrm{~mm}$) acc. to EN 50022

Any

PHOENIX screw terminals with wire guards, for $0.14 \mathrm{~mm}^{2}$ to $2.5 \mathrm{~mm}^{2}$

Electrical insulation:

Regulations

Electromagnetic
compatibility:

Protection (acc. to IEC 529
resp. EN 60 529):

Electrical standards: Acc. to IEC 1010 resp. EN 61010

Permissible operating voltages acc. to EN 61 010-1.1
Input voltage up to $\leq 600 \mathrm{~V}$
Increased isolation, contamination level 1, overvoltage category I

	Input	Output
Power supply	600 V	600 V
Input		600 V

Corresponding Test Voltages

Increased isolation, contamination level 1, overvoltage category I

	Input	Output
Power supply	2300 V	2300 V
Input		2300 V

Permissible operating voltages acc. to EN 61 010-1.1

Input voltage > 600 V to 1000 V
Standard isolation, contamination level 1, overvoltage category I

	Input	Output
Power supply	1000 V	1000 V
Input		1000 V

Corresponding Test Voltage

Standard isolation, contamination level 1, overvoltage category I

	Input	Output
Power supply	2200 V	2200 V
Input		2200 V

Ambient tests

EN 60 068-2-6:
Acceleration:
Frequency range:

Number of cycles:
EN 60 068-2-27:
Acceleration:

EN 60 068-2-1/-2/-3:

Vibration
$\pm 2 \mathrm{~g}$
$10 \ldots 150 \ldots 10 \mathrm{~Hz}$, rate of frequency sweep: 1 octave/minute
10, in each of the three axes
Shock
$3 \times 50 \mathrm{~g}$,
3 shocks each in 6 directions
Cold, dry heat, damp heat

Environmental conditions

Commissioning
temperature:
Operating temperature:
Storage temperature:

$$
-10 \text { to }+55^{\circ} \mathrm{C}
$$

$$
-25 \text { to }+55^{\circ} \mathrm{C}
$$

$$
-40 \text { to }+70^{\circ} \mathrm{C}
$$

Annual mean
relative humidity:

$$
\leq 75 \%
$$

Table 3: Ordering information
(see also Table 1: "Standard versions")

Order Code 819 -
Features, Selection
1. Mechanical design 3) Housing P12/17 for rail mounting, screw terminals not pluggable
9) Housing P12/17 St for rail mounting, screw terminals pluggable
2. Version / Power supply 1) Standard, $24 \ldots 60 \mathrm{~V}$ DC/AC

3. Function
1) 1 input max. 600 V ,

1 electrically insulated output
2) 1 input >600 to 1000 V ,

1 electrically insulated output
4. Input signal

Line 9:
[V] 0 ... 0.06 to $0 \ldots 600$ resp.
$0 . . .>40$ to $0 \ldots 1000^{*}$, also live-zero, start value >0 to 50% final value or span 0.06 ($>40^{*}$) to
$600 \vee\left(1000^{*}\right) \vee$ between

- 600 (-1000*) and 600 (1000*)
also bipolar asymmetrical.
* for line 2 in feature 3 only!

Line Z:
[mA] 0 ... 0.1 to 0 ... 40; also live-zero, start value >0 to 50% final value, or span 0.1 to 40 mA between - 40 and 40 mA , also bipolar asymmetrical. Not for line 2 in feature 3!

SINEAX TV 8191 channel
 Isolating amplifier unipolar/bipolar

$\mathrm{Y}=$ Output circuit full-scale value

Electrical connections

Dimensional drawings

Fig. 3. SINEAX TV 819 in carrying rail housing P12/17 clipped onto a tophat rail ($35 \times 15 \mathrm{~mm}$ or $35 \times 7.5 \mathrm{~mm}$, acc. to EN 50022), screw terminals not pluggable.

Fig. 4. SINEAX TV 819 in carrying rail housing P12/17 St clipped onto a top-hat rail ($35 \times 15 \mathrm{~mm}$ or $35 \times 7.5 \mathrm{~mm}$, acc. to EN 50 022), screw terminals pluggable.

Standard accessories

1 Operating Instructions in German, French and English

Measuring function / application	DC voltage (direct input)	DC current	DC voltage (input via potential devider)	
Measuring span	0.06 ... 40 V	0.1 ... 40 mA	> $40 \ldots 600 \mathrm{~V}$	> $40 \ldots 1000 \mathrm{~V}$
Measuring range limits taking account of the max. measuring span	-40 .. $0 \ldots 40 \mathrm{~V}$	-40 .. $0 \ldots 40 \mathrm{~mA}$	-600 .. $0 \ldots 600 \mathrm{~V}$	$-1000 \ldots 0 \ldots 1000 \mathrm{~V}$
Electrical connections = Measuring input = Measuring output $=$ Power supply	Front			

[^1]

[^0]: * For input voltages of $>600 \mathrm{~V}$, the double insulation is no longer assured. The safety is reduced.

[^1]: Printed in Switzerland • Subject to change without notice • Edition 04.01 • Data sheet No. TV 819 Le

